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Abstract

We present a new improvement upon the classical Bonferroni inequal-
ities and show how this improvement can be utilized in bounding the
reliability of a communication network whose nodes are perfectly reli-
able and whose edges are subject to random and independent failure.

1. Introduction

In this paper, we consider probabilistic networks whose nodes are perfectly reliable
and whose edges are subject to random and independent failure where all failure
probabilities are assumed to be known. There are a lot of performance measures
associated with such a network, e.g., the probability that each pair of nodes can
communicate along a path of operating edges (the so-called all-terminal reliability)
or the probability that a distinguished pair of nodes can communicate along a path of
operating edges (the so-called two-terminal reliability). In order to unify the various
concepts, one usually employs the notion of a coherent binary system, which, by
definition, is a couple ¥. = (FE, @) where F is a finite set (the component set. of
¥) and ¢ is a function (the structure function of Y) from the power set of E into
{0;1} such that ¢(@) = 0, #(E) = 1 and ¢(X) < ¢(Y) for any X,Y C E with
X C'Y and where at any instant of time, each component e € E assumes randomly
and independently one of two states, operating or failing, with probabilities p, and
¢e = 1 — p, respectively. We say that X is operating resp. failing if ¢ applied to
the set of operating components equals 1 resp. 0. Since the probability that ¥ is
operating is determined by ¥ and p = (pc)eck, it is abbreviated to Relg(p). A key
role in computing Rels(p) is played by the minpaths and mincuts of £: A minpath
resp. mincut of ¥ is a minimal subset F' of E such that ¢(F) = 1 resp. ¢(E\ F) = 0.



For all-terminal reliability of an undirected network, for instance, the appropriate
model is a coherent binary system ¥ = (E, ¢), where E is the edge-set of the network
and ¢(X) = 1 if and only if the subnetwork induced by X is connected. Note that
in this case, the minpaths correspond to the spanning trees and the mincuts to the
cutsets (= minimal edge disconnecting sets) of the network.

Instead of exactly computing the reliability of a coherent binary system, which is
known to be computationally intractible, one often applies Monte-Carlo or bounding
techniques. Many of these techniques make use of the classical Bonferroni inequalities.
For any probability space (€2, A, 1), any finite collection of events {A,},ev C A and
any n € N the classical Bonferroni inequalities state that

(4] > Zor(gy) e

veEV ICV, I#0 el
Ir/<n
M(UA,J) < Z -t (ﬂA) (n odd).
veV ey 120 i€l

Recently, Naiman and Wynn [3] (see also [4]) introduced a framework for improving
and generalizing the classical Bonferroni inequalities. In Section 2, we review this
framework and establish a new improvement upon the classical Bonferroni inequali-
ties. In Section 3, this improvement is used to obtain new bounds for the reliability of
a coherent binary system, which generalize Shier’s [5, 6] exact expression for the reli-
ability of a coherent binary system as an alternating sum over chains in a semilattice.
Finally, the new bounds are applied to a concrete communication network.

2. Improved Bonferroni inequalities

We start with some simple terminologies and facts from combinatorial topology.
An abstract simplicial complez & is a set of non-empty subsets of some finite set such
that I € & and @ # J C I imply J € &. The elements of & resp. [J& = (J,; ¢ I are
the faces resp. vertices of G. For any non-empty subset J of the vertices of &, we
use &(J) to denote the abstract simplicial complex containing all faces of & which
are included by J as a subset. By definition, the dimension of a face I, denoted by
dim I, is one less than its cardinality. The dimension of &, denoted by dim &, is the
maximum dimension of a face in &. The Fuler characteristic of G is defined by

X(6) = ) (-)*".

IeS

For example, the abstract simplicial complex 93*(V') consisting of all non-empty sub-
sets of some finite non-empty set V has Euler characteristic 1.

Proposition 2.1 (Naiman-Wynn [3]).. Let (2, A; 1) be a probability space,
{A,}vev C A be a finite collection of events and & C B* (V) be an abstract simplicial



complez. If &(J) has Euler characteristic < 1 for all non-empty subsets J of the
vertez-set of & satisfying (V;e; Aj N (e, CA; # 0, then .

7 ( U A,,) > Y ()it (ﬂAi) :

veV Ie6 i€l

On the other hand, if §(J) has Fuler characteristic > 1 for all non-empty subsets J
of the vertez-set of & satisfying (¢, 45 N ﬂjy CA; #0, then

M(UA,,) < ¥ (-y (m)

veEV Ie6 el

Lemma 2.2. Let G be an abstract simplicial complez, and let x be a vertezr of &
such that I € & and dimI < dim& imply I U {z} € &. Then, x(6) < 1 if the
dimension of G is odd, and x(&) > 1 if the dimension of & is even.

Proof. By the definition of the Euler characteristic,

X(G) =1+ Z d1mI+ Z dlmI

1€6, ¢TI I€®, z€l

T#{z}
= 1 4 E: (_1)d1mI+ E: (__ d1mI+ E: dlm(IU{:c})
I€S,z¢l 1€6,z¢1 I€S, zg1
dim I=dim & dim I <dim & dim I<dim &

Since dim(I U {x}) =dim I + 1 for any z ¢ I, the last two sums cancel. Therefore,

X( :1+Z d1m1_1+ mmszll

I1€6,z¢l 1€S,z¢l
dim I=dim & dim I=dim &

Lemma 2.3. Let X be a set of non- empty subsets of some finite set V' such that
V #UZX, and for any n € N define

(V%) = {I§V20<]I|§n,'IzXVX€%}. (1)
Then, x(In(V, X)) <1 if n is even, and x(3,(V, X)) > 1 if n is odd.
Proof. Choose z € V'\ |JX and apply Lemma 2.2. ||
The first main result of this paper is the following:

Theorem 2.4. Let (2, A, u) be a probability space and {A,}vev C A be a finite
collection of events. In addition, let V' be equipped with a partial ordering relation,
and let X be a set of non-empty subsets of V such that for any X € X,

N4 < | 4., | (2)

zeX zeX'



where X' is the set of lower bounds of X which are not contained in X, that is,
X' = {veV:iv<zVzeX}.

Then, for any n € N,

U ( U A,,) > Z (=)=t (ﬂAi) (n even),
vEV {eJn(V,x) i€l _

W ( U Av) = Z (—1)|I|—1 " (ﬂ A,-) (n odd),
veV 1€T(V.X) i€l

where I, (V, X) is defined as in Eq. (1).

Proof. We restrict ourselves to the case where n is even. By Proposition 2.1 we
only have to-show that "x(J,(V, X)(J)) < 1 for each non-empty subset J of the vertex-
set of J,(V, X) satisfying (;c; 4; N Njgs CA; # 0. Suppose x(J.(V,%X)(J)) > 1 for
some J of the specified type. We first observe that J,(V, X)(J) = J.(J, X N P*(J)),
and then, by Lemma 2.3, we conclude that J = |J (X N‘P*(J)). Hence, there is some
X € X such that X C J and min X = minJ, and from this it follows that

N4 c N4 < U4 < U4

jed JjEX JjeX’ j¢J
Therefore, (N;c; 45 N ¢, CA; = 0, which is contradiction with the choice of J. I

Remark. Note that for n = |V/| the inequalities in Theorem 2.4 become an
identity. The identity corresponding to the special case where any X € X satisfies
Neex Az C Ay for some 2z’ € X' has been published in [1] and applied to network
reliability problems in [2]. The inequalities, even those corresponding to this special
case, are new. We further remark that in Theorem 2.4, X does not need to consist
of all non-empty subsets of V' that satisfy Eq. (2). In the extreme case where X is
empty, the inequalities in Theorem 2.4 are just the classical Bonferroni inequalities.

3. Improved bounds for the reliability of a network

We now state the second main result of this paper. Recall that a chain in a
partially ordered set is a subset containing no two incomparable elements.

Theorem 3.1. Let ¥ = (E, ¢) be a coherent binary system, S the set of minpaths
resp. mincuts of ¥ and T an upper set of S such that each T € T is an upper set
of some S € S. Further, let T be equipped with a partial ordering relation such that
forany T\, T, € T, T C Ty UT, for some lower bound T of Ty and Ty. Then, in case



that S denotes the set of minpaths,

Rels(p) > > (-1 II p.  (n even), (3)
ZI€chains(T) e€E UI
0<|Z|<n
Relp(p) < Y ()" [] »e (0 odd), (4)
:%ihlazirzg) ecUT

and in case that S denotes the set of mincuts,

1 — Relg(p) > Z (1)1 H ¢ (n even), (5)

Zechains(T) e€ UI
0<|Z|<n
1-Rels(p) < D, (D[] ¢ (n odd), (6)
z%irxla;r:(r) ecUZ

where throughout chains(7T) denotes the set of chains in T and n € N.

Proof. Let 1 denote the induced probability measure on the set of network states,
and for any T € T, let A7 denote the event that all components in 7' are operating
(in case that S denotes the set of minpaths) resp. failing (in case that S denotes the
set of mincuts). Then,

Relz(p) = 1 ( U AT) resp. 1—Relg(p) = p ( U AT) )

TeT TeT

Moreover, it is easy to verify that

u(ﬂAr) = JJ p resp. u(ﬂAz) =[] e

Iez eeUz IeT ee Uz

In both cases, the assumptions imply that for each two incomparable T7, Ty € T there
is some T' € 7T strictly less than T} and T, such that Ay, N A, C Ar. Therefore, the
result immediately follows by setting X equal to the set of all incomparable elements
of 7 and then applying Theorem 2.4. |

Remarks. For n = |T| the above inequalities give rise to the following identities:

Rels(p) = 3 (-)F [ 5o resp. 1-Relp(p) = 3 (1) ] a..
Iechziras(”l') ecUzT Iecl;:iéxas(’f) ecUz

In a completely different way, these identities were first established by Shier [5, 6].
The bounds of Theorem 3.1, however, are new. In many important situations (e.g., if
T equals S and is not-a chain) these new bounds are much sharper than the classical
bounds and require much fewer sets to be inspected during their computation.

We finally consider the particular case of bounding the all-terminal reliability of a
directed or undirected network whose nodes are perfectly reliable and whose edges fail

5



randomly and independently with known probabilities. Let N, E and S denote the
set of nodes, edges and cutsets of the network, respectively, and for any non-empty
proper subset M of N let (M) consist of all edges linking some node in M to some
node outside M. Then ’

T = {(M):0+# M C N}

is an upper set of S, and moreover, each T € T is an upper set of some S € S. (Note
that 7 = S if and only if the network is complete.) Now, fix some a € N, and for
any non-empty proper subsets M;, M, of N containing a define

(M) R (My) <= M; C M,.
Then, (M; N M,) is the greatest lower bound of (M;) and (M>), and
(Mi N Ms) C (M) U (My).

Hence, the requirements of Theorem 3.1 are satisfied, and thus Eqgs. (5) and (6)
give upper resp. lower bounds for the all-terminal reliability of the network. (Partial
ordering relations appropriate for computing or bounding the two-terminal reliability
of a directed or undirected network can be adapted from Shier [5, 6]; see also [2].)

Example. Consider the network in Figure 1. For this network, the Hasse
diagram of (7, <) is shown in Figure 2. Under the assumption that all edges fail with
the same probability ¢ = 1—p, Table 1 shows the classical bounds b,(q) (n =1,2,...)
and the improved bounds b}(¢q) (n = 1,2,...) for the all-terminal reliability of the
network together with the number of sets inspected during the computation of each
bound. A numerical comparism of classical and improved bounds in shown in Table 2.

Figure 1: A sample network.
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Figure 2: Hasse diagram for the network in Figure 1.
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